Center of mass acceleration feedback control of functional neuromuscular stimulation for standing in presence of internal postural perturbations.

نویسندگان

  • Raviraj Nataraj
  • Musa L Audu
  • Ronald J Triolo
چکیده

This study determined the feasibility and performance of center of mass (COM) acceleration feedback control of a neuroprosthesis utilizing functional neuromuscular stimulation (FNS) to restore standing balance to a single subject paralyzed by a motor and sensory complete, thoracic-level spinal cord injury. An artificial neural network (ANN) was created to map gain-modulated changes in total body COM acceleration estimated from body-mounted sensors to optimal changes in stimulation required to maintain standing. Feedback gains were systematically tuned to minimize the upper-limb (UL) loads applied by the subject to an instrumented support device during internally generated postural perturbations produced by volitional reaching and object manipulation. Total body COM acceleration was accurately estimated (>90% variance explained) from 2 three-dimensional (3-D) accelerometers mounted on the pelvis and torso. Compared with constant muscle stimulation employed clinically, COM acceleration feedback control of stimulation improved standing performance by reducing the UL loading required to resist internal postural disturbances by 27%. This case study suggests that COM acceleration feedback could potentially be advantageous in a standing neuroprosthesis since it can be implemented with only a few feedback parameters and requires minimal instrumentation for comprehensive 3-D control of dynamic standing function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Center of mass acceleration feedback control for standing by functional neuromuscular stimulation: a simulation study.

The potential efficacy of total body center of mass (COM) acceleration for feedback control of standing balance by functional neuromuscular stimulation (FNS) following spinal cord injury (SCI) was investigated. COM acceleration may be a viable alternative to conventional joint kinematics because of its rapid responsiveness, focal representation of COM dynamics, and ease of measurement. A comput...

متن کامل

The effect of postural restoration exercises on function and isokinetic torque of shoulder external and internal rotator muscles in non-professional athletes with shoulder internal impingement syndrome

Introduction: Internal Shoulder impingement is one of the most common problems in athletes with postural asymmetry. The present study aimed to investigate the effect of postural restoration exercises on patients' disabilities and the torque of the shoulder rotator muscles. Materials and Methods: In this clinical trial study, 23 patients with internal shoulder entrapment were randomly divided in...

متن کامل

Trunk acceleration for neuroprosthetic control of standing: a pilot study.

This pilot study investigated the potential of using trunk acceleration feedback control of center of pressure (COP) against postural disturbances with a standing neuroprosthesis following paralysis. Artificial neural networks (ANNs) were trained to use three-dimensional trunk acceleration as input to predict changes in COP for able-bodied subjects undergoing perturbations during bipedal stance...

متن کامل

Prediction of Body Center of Mass Acceleration From Trunk and Lower Limb Joints Accelerations During Quiet Standing

Purpose: Predicting body Center of Mass (COM) acceleration is carried out with more accuracy based on the acceleration of three joints of lower limb compared to only accounting joints of hip and ankle. Given that trunk movement during quite standing is noticeable, calculating trunk acceleration in model might increase prediction accuracy of COM acceleration. Moreover, in previous research studi...

متن کامل

Common muscle synergies for control of center of mass and force in nonstepping and stepping postural behaviors.

We investigated muscle activity, ground reaction forces, and center of mass (CoM) acceleration in two different postural behaviors for standing balance control in humans to determine whether common neural mechanisms are used in different postural tasks. We compared nonstepping responses, where the base of support is stationary and balance is recovered by returning CoM back to its initial positi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of rehabilitation research and development

دوره 49 6  شماره 

صفحات  -

تاریخ انتشار 2012